SPRAWOZDANIE 5
Zajecia nr 6 - Calkowe przeksztatcanie Fouriera - Michat Midor, gr. 5 - 5.11.2025, godz: 16:45
Wstep teoretyczny:

Celem niniejszego ¢wiczenia jest praktyczna analiza ciggtego przeksztatcenia Fouriera (CFT). W odréznieniu
od szeregbw Fouriera, ktére stosuje sie wylgcznie do sygnatow okresowych , catkowe przeksztatcenie Fouriera
pozwala na analize czestotliwosciowg sygnatow nieokresowych lub o ograniczonym czasie trwania.

W ramach ¢wiczen, do obliczen symbolicznych wykorzystany zostat pakiet MATLAB. Analizie poddano
podstawowe sygnaty (sinusoida, kosinusoida, impulsy), zjawisko modulacji amplitudowej oraz wptyw
okienkowania sygnatu na jego widmo czestotliwosciowe.

Rozwigzanie zadan:
Zadanie 1)

Pierwszym krokiem byto wyznaczenie transformaty Fouriera dla podstawowego sygnatu sinusoidalnego.
Zgodnie z instrukcjg, wykreslono sygnat w dziedzinie czasu oraz cze$¢ rzeczywistg i urojong jego widma.

clear all; close all;
syms t x fO w wO X_FT

fO = 100; %Hz

w0 = 2*pi*f0;

BND_t = [-10/10;10/10]; %20 okresow

t SMP = [BND_t(1):1/(10*f0):BND_t(2) 1:;

BND w = [-3*w0;3*w0];

w_SMP = [BND_w(1):w0/10:BND_w(2) ]:

X = sin(wO0*t);

X_FT = fourier(x); % symboliczne obliczanie transformaty
figure

subplot(3,1,1); ylabel("x(t)"); hold on

ezplot(x,BND_t); hold on; grid on;

v_num = subs(x, t, t SMP);

n = find(abs(v_num) == inf); % plot dirac (inf) - nieskonczone "szpilli" sa
rysowane jako stupki

stem(t_SMP(n),sign(v_num(n)),"r*°, “LineWidth", 2);

subplot(3,1,2); ylabel("real(X(\omega))"); hold on
ezplot(real(X_FT), BND w); hold on; grid on;

v_num = subs(real(X_FT), w, w_SMP);

n = find( abs(v_num) == inf); % plot dirac (inf)
stem(w_SMP(n),sign(v_num(n)), "r*°, “LineWidth", 2);

subplot(3,1,3); ylabel("imag(X(\omega))"); hold on
ezplot(imag(X_FT), BND_w); hold on; grid on
v_num = subs(imag(X_FT), w, w_SMP);



n = find( abs(v_num)
stem(w_SMP(n),pi*sign(v_num(n)), "r*-,

sin( 200 1 &)

1

inf ); % plot dirac (inf)

"LineWidth®, 2);
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Zgodnie z teorig i wynikami dziatania skryptu, transformata sygnatu sinusoidalnego jest czysto urojona. Sklada
sie z dwdch delt Diraca (widocznych jako "szpilki") przy pulsacjach rownych dodatniej i ujemnej pulsaciji
podstawowej, co potwierdza wykres czesci urojonej. Wykres czesci rzeczywistej jest tozsamosciowo réwny

Z€ero.

Zadanie 2)

Celem zadania byta analiza i poréwnanie widm czestotliwosciowych dla zbioru sygnatéw podstawowych:
kosinusoidy, sygnatu statego, skoku jednostkowego, impulsu prostokatnego oraz impulsu tréjkatnego .

x_tri = (1 - fO*abs(t)) * (heaviside(t + 1/f0) - heaviside(t - 1/f0));
sygnhaly = {cos(wO*t), sym(10), heaviside(t), heaviside(t + 1/f0) -

heaviside(t - 1/f0), x tri};

for sygnal=1:length(sygnaly)
x = sygnaly{sygnal}
X_FT = fourier(x);
figure

subplot(3,1,1); ylabel("x(t)"); hold on

ezplot(x,BND_t); hold on; grid on;



v_num = subs(x, t, t SMP); % Podstawienie do zamiany wartosci
symbolicznych na numeryczne, dla kazdej wartosci w wektorze t_SMP

n = find(abs(v_num) == inf); % plot dirac (inf) - nieskonczone
“"szpilli" sa rysowane jako stupki, szukanie indekséw gdzie wartos¢ ucieka
do nieskonczonosci

stem(t_SMP(n),sign(v_num(n)), "r*", "LineWidth", 2); % x to tylko indeksy
znalezione powyzej, y to ich znak, by ddugosc¢ stupka miata amplitude réwng 1

subplot(3,1,2); ylabel("real(X(\omega))"); hold on
ezplot(real (X_FT), BND w); hold on; grid on;
try
v_num = subs(real (X_FT), w, w_SMP);
n = find( abs(v_num) == inf); % plot dirac (inf)
stem(w_SMP(n),sign(v_num(n)),"r**, “LineWidth", 2);
catch
end

subplot(3,1,3); ylabel("imag(X(\omega))"); hold on
ezplot(imag(X_FT), BND _w); hold on; grid on
try % program sie nie zatrzyma, gdy czes¢ urojona lub rzeczywista to np.
1/w, a w=0
v_num = subs(imag(X_FT), w, w_SMP);
n = find( abs(v_num) == iInf ); % plot dirac (inf)
stem(w_SMP(n),pi*sign(v_num(n)), “r*", “LineWidth®, 2);
catch
end
end

x = ¢o0s(200 7 1)
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x = heaviside(z)
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Z wykreséw wygenerowanych w tym zadaniu mozna wysnu¢ wniosek, ze "szpilki" wystepuja tam, gdzie sygnat
posiada "czyste", niezmienne czestotliwosci i cata energia sygnatu jest skupiona wiasnie w nich.

Natomiast dla sygnatéw trwajgcych skonczony czas widmo jest rozmyte po catej osi czestotliwosci, jest ich
nieskonczenie wiele. Nagte, ostre zmiany sygnatu mozliwe sg tylko jesli "zmiesza" sie ze sobg ogromng ilos¢
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réznych czestotliwosci sygnatu sinusoidalnego.

Zadanie domowe 1)

Zadanie polegato na wygenerowaniu i poréwnaniu wykreséw gestosci widmowej amplitudy oraz gestosci

widmowej fazy dla sygnatdéw kosinusa i sinusa.

sygnaly 7zZD1 = {cos(wO*t), sin(wO*t)};
nazwy_sygnalow = {"cos(\omega 0t)", "sin(\omega Ot)"};

for

1:length(sygnaly_ZD1)
= sygnaly zZD1{i};
_FT = fourier(X);

X X mm

figure;

sgtitle(sprintf("Analiza ZD1: Sygnat %s®, nazwy sygnalow{i}));

subplot(2,1,1);

ylabel (*"A(\omega) = |X(\omega)|");
hold on;

grid on;



title("Gestos¢ Widmowa Amplitudy®);

plot(BND_w, [O O], "b-"); % Linia bazowa y=0
x1im(BND_w);
yhim([O pi*1.2]); % Ustawienie limitu osi Y dla czytelnosci

% Reczne rysowanie delt
% Amplituda delty = pi

try
A FT = abs(X_FT); % Potrzebne do detekcji
v_num A = subs(A FT, w, w_SMP);
n_A = find(abs(v_num_A) == inf);
if ~isempty(n_A)
stem(w_SMP(n_A), pi * ones(size(n_A)), “r*°, "“LineWidth", 2);
end
catch
end
subplot(2,1,2);
ylabel ("\phi(\omega) = arg(X(\omega)) [rad]");
hold on;
grid on;

title("Gestos¢ Widmowa Fazy®);

plot(BND_w, [0 0], "b-7);

x1im(BND_w) ;

yiim([-pi pi]); % Ustawiamy zakres osi Y dla fazy

% Reczne rysowanie fazy dla delt

try
v_num_imag = subs(imag(X_FT), w, w_SMP);
n_imag = find(abs(v_num_imag) == inf);
if ~isempty(n_imag) % Wykona sie tylko dla sin(t)
znaki = sign(v_num_imag(n_imag));
fazy = znaki * (pi/2); % faza = +pi/2 lub -pi/2
stem(w_SMP(n_imag), fazy, "r*", "LineWidth", 2);
end
catch
end

end



Analiza ZDI1: Sygnal cos(wgt)
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Oba sygnaly maja doktgdnie takie samo widmo amplitudowe - zbudowane sg z tych samych czestotliwosci, a
ich moc (amplituda) jest identyczna.

Réznica pojawia sie w fazie - cosinus jest funkcjg rzeczywistg i parzysta, tak samo jak jego transformata
Fouriera, sinus natomiast jest rzeczywisty nieparzysty, wiec transformata jest czysto urojona.



Zadanie 3)

W tym zadaniu przeprowadzono symulacje modulacji amplitudowej (AM). Sygnat no$ny cos(w0*t) pomnozony
zostat przez sygnat modulujacy (1 + m * x_m), gdzie X_m to sinusoida o 10-krotnie mniejszej czestotliwosci, a
gteboko$¢ modulaciji m=0.5.

Dodatkowo poréwnuje moc sygnatu nosniego P_nosny z catkowitg mocg sygnatu zmodulowanego P_y w celu
okreslenia wptywu parametru m na te relacje.

Xx_n = cos(wO*t);
w.m=w0 / 10;

X m = sin(w.m* t);

m = 0.5;

X=( +m*xm * x n;

X_FT = fourier(x);

figure

subplot(3,1,1); ylabel("x(t)"); hold on

ezplot(x,BND_t); hold on; grid on;

v_nhum = subs(x, t, t SMP); % Podstawienie do zamiany wartosci symbolicznych
na numeryczne, dla kazdej wartosci w wektorze t_SMP

n = find(abs(v_num) == inf); % plot dirac (inf) - nieskonczone "szpilli"

sg rysowane jako stupki, szukanie indeksow gdzie wartos¢ ucieka do
nieskonczonosci

stem(t_SMP(n),sign(v_num(n)), "r*", "LineWidth", 2); % x to tylko indeksy
znalezione powyzej, y to ich znak, by ddugos¢ stupka miata amplitude réwng 1

subplot(3,1,2); ylabel("real(X(\omega))"); hold on
ezplot(real(X_FT), BND w); hold on; grid on;
try
v_num = subs(real (X_FT), w, w_SMP);
n = find( abs(v_num) == inf); % plot dirac (inf)
stem(w_SMP(n),sign(v_num(n)),"r*°, “LineWidth", 2);
catch
end

subplot(3,1,3); ylabel("imag(X(\omega))"); hold on
ezplot(imag(X_FT), BND_w); hold on; grid on
try % program sie nie zatrzyma, gdy czes¢ urojona lub rzeczywista to np.
1/w, a w=0
v_num = subs(imag(X_FT), w, w_SMP);
n = find( abs(v_num) == iInf ); % plot dirac (inf)
stem(w_SMP(n),pi*sign(v_num(n)), “"r*", “LineWidth", 2);
catch
end
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imagl Xim))
=

% Zadanie domowe 2:

A _nosny 1;

P_nosny = A_nosny*A_nosny/2;

% Py =Pn+ (n2 7/ 4)

P y = P_nosny + (m*m/4);

fprintf("Relacja mocy (Py /7 Pn): %.4f\n", P_y / P_nosny);

Relacja mocy (Py /7 Pn): 1.1250

Wykresy widma sygnatu zmodulowanego wyraznie pokazalty charakterystyczna strukture AM. 3 wykres sygnatu
modulowanego ukazuje dwa symetryczne prazki, w ktérych zawarta jest informacja o sygnale modulujgcym.

Gtebokos¢é modulacji ma kluczowy wptyw, poniewaz catkowita moc sygnatu smodulowanego rosnie
proporcjonalnie do m"2 - oznacza to, ze im wieksza warto$¢ m, tym wiecej energii (mocy) umiejscowione
zostaje w prazkach bocznych.

Zadanie 4)

Celem zadania byta analiza wptywu okienkowania sygnatu na jego widmo czestotliwosciowe. Sygnat
kosinusoidalny o skonczonym czasie trwania (6.5 okresu) zostat pomnozony przez trzy r6zne funkcje okna:
prostokatne, trojkatne oraz Gaussa.

To = 6.5/10;
w_rect = heaviside(t + To/2) - heaviside(t - To/2);

w_tri = (1 - abs(t) /7 (To/2)) * w_rect;
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c = (To/2) 7/ 3;
w_gauss = exp(-t"2 / (2*c"2));

sygnaly okno = {cos(wO*t) * w_rect, cos(wO*t) * w_tri, cos(wO*t) * w_gauss};

for sygnal_okno=1:length(sygnhaly okno)
X = sygnaly_okno{sygnal okno}
X_FT = fourier(x);
figure

subplot(3,1,1);
ylabel ("x(t)");
hold on;
ezplot(x, BND_t);
hold on;
grid on;
try
Vv_num = subs(x, t, t SMP);
n = find(abs(v_num) == inf); % gestos¢ widmowa amplitudy
stem(t_SMP(n), sign(v_num(n)), “r*", “LineWidth", 2);
catch
end

subplot(3,1,2);

ylabel ("A(\omega) = |X(\omega)|~");
hold on;

ezplot(abs(X_FT), BND w);

hold on;

grid on;

subplot(3,1,3);

ylabel (*A(\omega) [dB]");

hold on;

ezplot(20*1ogl0(abs(X_FT) + 1e-6), BND w); % zwiekszenie czytelnosci
dzieki skali dB

hold on;

grid on;
end

X =

—c0s(200 7 1) (hca\’iside(f - 41_(%) - heaviside(r + %?0))
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Widzimy, ze okienktowanie prostokatne ma najlepsza rozdzielczos¢ - prazek gtowny jest bardzo waski. Niestety
pradki boczne sg bardzo wysokie, co powoduje najwiekszy przeciek widmowy.

Okno tréjkatne ma nieco szerszy stupek gtowny natomiast boczne opadajg znacznie szybciej i sg duzo
mniejsze.

Dla okna Gaussa stupek gtéwny jest najszerszy, ale nie ma zadnego wycieku widmowego.

Najlepsza metoda jest kompromis, czyli okno tréjkatne - oferuje bardzo duza redukcje przecieku widmowego,
kosztem akceptowalnej utraty rozdzielczosci.
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